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Abstract—The recovery of influence ontology structures is a
useful tool within knowledge discovery, allowing for an easy
and intuitive method of graphically representing the influences
between concepts or variables within a system. The focus of this
research is to develop a method by which undirected influence
structures, here in the form of undirected Bayesian network
skeletons, can be recovered from observations by means of
some pairwise similarity function, either a statistical measure
of correlation or some problem-specific measure.

In this research, we present two algorithms to construct
undirected influence structures from observations. The first
makes use of a threshold value to filter out relations denoting
weak influence, and the second constructs a maximum weighted
spanning tree over the complete set of relations. In addition, we
present a modification to the minimum graph edit distance (GED)
[1], which we refer to as the modified scaled GED, in order to
evaluate the performance of these algorithms in reconstructing
known structures. We perform a number of experiments in
reconstructing known Bayesian network structures, including a
real-world medical network [2]. Our analysis shows that these
algorithms outperform a random reconstruction (modified scaled
GED =~ 0.5), and can regularly achieve modified scaled GED
scores better than 0.3 in sparse cases and (.45 in dense cases.

We argue that, while these methods cannot replace traditional
Bayesian network structure-learning techniques, they are useful
as computationally cheap data exploration tools and in knowledge
discovery over structures which cannot be modelled as Bayesian
networks.

Index Terms—ontology, structure learning, knowledge discov-
ery, minimum graph edit distance, graphical model

I. INTRODUCTION

A common way of representing knowledge within a domain
is through an ontology: a set of concepts in the domain and
the relations between them [3]. A common form of ontology
is the influence ontology, whose relations encode causal influ-
ence between the concepts or variables in the ontology. For
example, an influence ontology may be employed to represent
the influence relations between diseases and symptoms in a
medical setting (see Figure 2 in Section IV-B).

The ability to recover the underlying structure of an influ-
ence ontology from observations is a useful tool in knowledge
discovery. This task has been achieved to various degrees
of success in the existing literature. Many methods exist to
recover a structure alongside a conditional probability distri-
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bution (CPD), at the cost of limiting the structure to a directed
acyclic model (see Section II-A) [4] [5] [6].

If instead we discard both direction of influence and the
CPD, we can instead recover an undirected structure, as in
[7] [8] [9]. These methods, however, make other assumptions,
either restricting the model structure or assuming continuous,
rather than categorical data. The purpose of this research,
therefore, is to develop a computationally cheap method
by which generalised undirected influence structures can be
reconstructed from observations, either continuous or categor-
ical, using pairwise similarity functions.

To that end, this research makes the following contributions.
Firstly, we present two algorithms to reconstruct an undirected
influence structure from observations under varying density
assumptions. Both methods can make use of any pairwise
similarity measure, either a statistical measure, as in this
research, or a problem-specific similarity measure such as a
distance metric or semantic similarity. Secondly, we present a
modification to the graph edit distance (GED) for comparing
undirected graphs over shared variable spaces, scaled by the
number of possible edges, here termed the modified scaled
GED, as a means of evaluating our recovered structure against
a ground truth model.

The structure of this paper is as follows. In Section II, we
provide backgrounds of key concepts related to our research.
Section III contains the contributions of this research, namely
our two proposed algorithms in Section III-A and our proposed
evaluation score in Section III-B. In Section IV, we outline a
set of experiments to test the efficacy of our algorithms. The
results of these experiments are presented and discussed in
Section V.

II. BACKGROUND AND RELATED WORK
A. Modelling Ontologies

As ontologies consist of domain concepts or variables and
the relations between them, a natural approach to modelling
them is to use some form of graphical model, whose vertices
represent the concepts or variables and whose edges represent
the relations.

Bayesian networks are directed acyclic graphs (DAGs)
whose vertices represent random variables and whose edges
represent influence of one variable on another, coupled with
a conditional probability distribution (see Figure 1) [10]. This



structure can also be thought of as a representation of the
conditional independencies between the random variables [11].
Indeed, it is through the exploitation of these independency
assumptions that a Bayesian network can more compactly
represent a joint distribution.

When modelling an influence ontology, a Bayesian network
presents two limitations. First of all, the direction assigned to
each edge may not necessarily reflect the causal flow in the
original system, and may instead result in a model which is I-
equivalent to the ground truth model [13]. Secondly, limiting
the structure to an acyclic model eliminates valid ontology
structures (for example, a system in which two variables
influence each other over time).

Given these restrictions, we may instead wish to generalise
our graphical model to an undirected structure, at the cost
of losing the CPDs and thus the ability to perform inference.
Indeed, for the purposes of knowledge discovery, an undirected
model can still provide useful information about the structure
of an influence ontology. Nevertheless, Bayesian networks
are still useful in this research, as they provide a method of
sampling observations from a known ground truth structure.

B. Undirected Structure Learning

Several techniques have been used previously to learn the
structure of undirected models. For example, one approach
is to calculate the mutual information between each variable
pair, sort these values and then construct edges in descending
order provided no path already exists between two edges (to
ensure no unnecessary edges are added) [7]. This is essen-
tially Kruskal’s algorithm [14], adapted to find the maximum
weighted spanning tree of the graph, where each edge is
weighted using the mutual information.

Another approach to continuous data is to assume it follows
a Gaussian distribution with covariance ¥, which implies that
if Zi_jl = 0, then variables X; and X, are conditionally
independent [8]. LASSO is then used to estimate the presence
of non-zero elements in X~ !. An extension of this work is to
use a coordinate descent method to estimate X! [9].
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Fig. 1: A famous example of a Bayesian network, showing
how a complete representation of any random variable X
requires considering only those variables who are parents of
X in the graphical representation [12].

C. Model Evaluation

When reconstructing a model, it is important to measure
how well one’s learned model recovers the ground truth
structure. As the focus of this research is in learning the
undirected structure of such models, any evaluation metric
must rely solely on its structural features.

There are a few existing metrics for scoring the similarity
between graphs. One of the most intuitive metrics is the
minimum graph edit distance (GED) [15]. For two graphs,
Go and Gy, the minimum graph edit distance, GED(Gy, G1),
is defined as the minimum number of operations required
to transform Gy into G;. For an unweighted and undirected
graph where the set of operations consists of edge deletion,
edge insertion, vertex deletion and vertex insertion, this is
formulated as

GED(go, gl) = Z Ced + Z Ces

ecFEo—FEq ecF1—Ey (])
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where F; and V; are the sets of edges and vertices respectively
in graph G;, and c.q, Cei, Cuvq and c¢,; are the costs of edge
deletion, edge insertion, vertex deletion and vertex insertion
respectively [1]. Assuming non-negative costs and noting that
GED(G;,G;) > 0, we have that values of GED(G;,G;)
close to O indicate similar graphs, whereas high values of
GED(G;,G;) indicate very dissimilar graphs.

IIT. RESEARCH METHODOLOGY

In this research, we present two algorithms to reconstruct
the undirected skeleton of an influence ontology over a set
of N wvariables, X, given a set of M observations D =
{o][1],...,0[M]} and a similarity function, similarity. We
also present a modified version of the GED score presented
in equation 1 to be used in our experiments in Section IV.

A. Algorithms

Our first algorithm relies on a threshold parameter ¢ € [0, 1].
In this simple approach, we first construct a similarity matrix
S;; = similarity(X;, X,;) and then keep any edges e;; where
|Si;| > t. Here we take the absolute value to account for
similarity functions whose range includes negative numbers.
In pseudocode, the algorithm is as follows.

Algorithm 1 Build Influence Ontology - Threshold Approach

1: procedure BUILD_GRAPH(X, D, similarity, t)
22 G+« (V=X,E=0)

3 N <« Dim(G)

4: Sij + similarity(D, 1, j)

5: for i € [0,..., N — 1] do

6: for j € [0,..., N — 1] do

7 if i # j and |S;;| > t then

8 addEdge(G, 1, j)

9 return G

An important consideration is the choice of threshold value.
Clearly, a low ¢ would favour a denser graph, while a high



t would favour a sparser graph. Some prior insight into the
expected density of the ground truth model will therefore assist
in the choice of t.

One potential limitation with this approach is that the
similarity function merely measures similarity and does not
encode conditional independence. Therefore similarities be-
tween vertices without a common edge but with a common
ancestor may be mistaken for two vertices with influence
between them. In these cases, it may be desirable to recover a
sparse structure, such as a tree. To do this, we employ a similar
methodology to [7], here using Kruskal’s algorithm [14] to find
the maximum weighted spanning tree over the complete graph
weighted e;; = |S;;/, as in the following pseudocode.

Algorithm 2 Build Influence Ontology - MWST Approach

1: procedure BUILD_GRAPH(X, D, similarity)
2 G+ (V=XE=0)

3 N « Dim(G)

4 Si; < similarity(D,1i,7)

5: for i € [0,..., N — 1] do

6: for j € [0,...,N —1] do

7: if ¢ # j then

8 addEdge(G,1,j) with weight =
9 T + Kruskal_Get_MWST(G)

0 return 7

551

10:

Here there is no parameter, as the choice of density is
implicit in the decision to recover a spanning tree. Obviously,
limiting the reconstructed structure to a tree will preclude
other potentially valid structures (for example, the structure
in Figure 1). The spanning property may also add weak edges
between nodes that, in the ground truth structure, belong
to disconnected sub-graphs. However, the method has other
strengths, as the undirected structure can be transformed into
a directed structure by directing all edges away from a given
vertex. The choice of root vertex is not obvious, but may be
assisted by domain knowledge.

B. Modified Scaled Graph Edit Distance

To modify the GED score presented in equation 1, we begin
by setting all costs to 1, and assuming Vy = V;. Assuming
a symmetric adjacency matrix representation of Gy and ,G;
(with Os in the main diagonal) equation 1 reduces to
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where El(]k ) is the adjacency matrix of Gy. As with equation
1, a score of 0 in this case represents a perfect reconstruction.
As the number of edges in an undirected N-node graph
is bounded above by M [16], the worst possible edit
distance is Y¥=1 5 =Y Thus, by dividing equation 2 by M
we arrive at a modified scaled graph edit distance, a measure
where O indicates the best possible reconstruction and 1
indicates the worst.

GED(Gy,G1) =

1 N N (0
N«H@Z B )

IV. EXPERIMENTS

To test the efficacy of the algorithms presented in Section
III, we detail an experiment in recovering the undirected
ground truth structures of several Bayesian Networks of vary-
ing densities. In addition to this experiment, we also apply
algorithms 1 and 2 to data sampled from a real Bayesian
network constructed by domain experts.

A. Bayesian Network Reconstruction

While our algorithms can be applied to any graphical
structure, Bayesian networks (whose structures are directed
acyclic graphs) are chosen for the experiment in this research,
as observations can be sampled from them, allowing for
comparison against a known ground truth model.

To that end, we began by randomly generating 200 Bayesian
networks. To do this, we firstly made use of the fact that a
graph is acyclic if and only if it has a topological ordering
[17], which is true if and only if the adjacency matrix can be
transformed into a strongly upper triangular matrix [18], or
equivalently, a strongly lower triangular matrix. To generate
a random lower triangular adjacency matrix, we defined a
density factor, p, and constructed each edge in the lower
triangle with uniform probability P(e;;) = p. Thus a low
p is likely to produce a sparse graph, while a high p is likely
to produce a dense graph.

Forevery N € {4,8,12,16,20} (where N denotes the num-
ber of vertices in the graph) and each p € {0.2,0.4,0.6,0.8},
we generated 10 graphs, thus resulting in 200 graphs across a
range of variable space sizes and densities. These adjacency
matrices were then used to construct continuous Bayesian
networks with Gaussian CPDs and 20,000 observations were
sampled from each network using forward sampling.

In our experiment, we used algorithms 1 and 2 to obtain
structures for each graph (varying the threshold parameter ¢
for algorithm 1). In this research, we made use of the Pearson
correlation coefficient [19] and Spearman’s rank correlation
coefficient [20] as the similarity functions used to recover
influence between the variables. The modified scaled GED
score (equation 3) was then used to evaluate the graph against
the symmetric version of the adjacency matrix used to generate
the observations. The average of the 10 graphs that share NV
and p values was then computed and plotted against a varying
t.

As a baseline for both experiments, we used a random
graph reconstruction which randomly constructed edges with
uniform probability P(e;;) = 0.5.

B. CHILD Network Application

To test our methodology on a real application, we make
use of the CHILD Network (Figure 2), a Bayesian network
constructed by [21] and adapted by [2], used to diagnose
congenital heart disease in infants suffering from “blue baby
syndrome”.

The network consists of 20 discrete nodes with 25 edges.
10,000 observations have been sampled from the network. As
the variables are categorical, we employ the bias-corrected



Cramer’s V as our similarity measure [22]. Varying ¢ for
algorithm 1, we compute the modified scaled GED for both
algorithms.

V. RESULTS AND DISCUSSION
A. Bayesian Network Reconstruction

We begin by examining the modified GED Score against the
threshold parameter ¢ for the most sparse graphs (p = 0.2) for
varying numbers of variables N (see Figures 3 and 4). The
error bars in each of the plots in this research denote one
standard deviation from the mean. For ease of viewing, the
error bars for the random reconstruction have been omitted.
Example reconstructions for each method can be found in
Figure 5.

Our first observation is that both similarity functions pro-
duce almost identical results for the threshold approach (al-
gorithm 1) and identical results for the MWST approach
(algorithm 2). This trend continues throughout the results
in this research, and points to a linear correlation between
variable pairs.

Another observation is that for all values of ¢ # 0, the
threshold approach outperforms the random approach by a
significant margin (as high as 0.3 GED for the 20-node case).
The threshold approach curves all follow a “u-shape”, with
the dip of the curve shifting towards higher ¢ values as NV
increases. The MWST approach also outperforms the random
approach, with a higher margin as N increases. For larger
values of IV, the MWST approach achieves the best results,
with a modified scaled GED score of 0.1242 for N = 20.

We now examine the most dense graphs (p = 0.8), varying
t and N as before (see Figures 6 and 7). In these results, we
see somewhat of a reversal of some of the previous trends.
For all values of NN, there are low values of ¢ that cause the
threshold approach to perform the best, with a modified scaled
GED score of around 0.2. As with the sparse case, even the
best scores increase as N grows larger. The MWST approach
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Fig. 2: The CHILD Network, a real-world Bayesian Network,
used to diagnose congenital heart disease in infants suffering
from “blue baby syndrome” [2]
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performs more poorly at this density, performing worse than
the random reconstruction.

In summary, we observe the following. For sparse graphs,
the MWST approach produces the best reconstructions of the
ground truth models. This is probably because sparse graphs
are likely to, at the very least, resemble tree structures. The
threshold approach outperforms the random approach, with
low t performing better for low N and high ¢ performing
better for high N.

For dense graphs, the threshold approach produces the best
reconstructions of the ground truth models. This is because the
approach is capable of capturing the dense structure and is not
hindered by the limitation discussed in section III-A. Low ¢
values tend to produce better reconstructions, as they allow
for denser graphs. In contrast, the MWST approach performs
poorly for dense graphs, as tree structures are, by their nature,
sparse.

Overall, the algorithms perform best when reconstructing
sparse structures. This is because sparse Bayesian networks
encode fewer conditional dependencies, and thus variable pairs
that do not have a direct edge are less likely to be strongly
correlated.

B. CHILD Network Application

For this application, we begin by executing algorithms 1
and 2, varying ¢ in the case of algorithm 1, and plotting the
modified scaled GED against ¢, as in Figure 8.

Our results here are consistent with the results for a very
sparse graph (e.g. Figure 4). The MWST approach produces
the best reconstruction, with a score of 0.042105 (8 edits). The
threshold approach yields a best score of 0.07368 (14 edits)
for t = 0.4715. Figure 9 demonstrates these reconstructions.

In the best cases, both approaches tend to construct
very sparse structures over the variables, with the thresh-
old approach producing many disconnected components. The
MWST approach produces a very close reconstruction, pre-
serving many of the correct edges (apart from a reversal in the
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Fig. 3: Modified Scaled GED Score vs Threshold, p = 0.2,
N =12



CO2 and CO2 Report branch), and overall appears to capture
the 6 distinct branches in the ground truth structure.

VI. CONCLUSION

The usefulness of our research depends largely on the
requirements of the problem they are used to solve. We have
shown empirically that algorithms 1 and 2 can reconstruct the
undirected skeleton of Bayesian networks of varying variable
numbers and densities, with a much greater fidelity than a ran-
dom approach. However, they cannot compete with traditional
structure learning approaches in this regard, as they do not
recover edge directions or conditional probability distributions.
That is not to say that these algorithms are useless in this
regard. Indeed, a maximum weighted spanning tree approach
followed by directing edges away from a given node (as
described in Section III-A), may prove to be a useful initial
condition in traditional Bayesian network structure learning
methods, although further research is required to test this
hypothesis.

The real strength of these algorithms, however, is in knowl-
edge discovery and data exploration, as they provide a quick
and computationally cheap method to graphically represent
influence within systems of random variables, to a reasonable
degree of accuracy. These explorations may prove useful in
understanding the density of the underlying ontology and
its structural characteristics (for example, uncovering the six
branches of the CHILD Network in Figure 9).

While this research has focused entirely on recovering
Bayesian network skeletons, it can, in principle, be applied
to any graphical structure modelling an influence ontology.
For example, consider the problem of student plagiarism, in
which a class of students produce some work and some subset
of these students influence each other’s work (e.g. copying).
Plagiarism detection software exists that can quantify the
similarity between pairs of submissions, and therefore, using
this pairwise similarity as our similarity measure, we can
apply algorithm 1 to discover cliques of students who worked
in groups. Further research is necessary to determine the
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Fig. 4: Modified Scaled GED Score vs Threshold, p = 0.2,
N =20

(a) Ground truth Bayesian net-
work structure

(b) Threshold Reconstruction
t = 0.15, GED = 7 (0.25

scaled)
(&) (7)
///,/E///'g/
5L ()

(¢c) MWST Reconstruction,  (d)
GED = 4 (0.1429 scaled)

Random Reconstruction,
GED = 11 (0.3929 scaled)

Fig. 5: Example reconstructions for a graph where N = 8
and p = 0.4. Black lines denote correctly reconstructed edges,
thick red lines denote incorrectly added edges and dotted lines
denote edges that should have been added but were not
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Fig. 6: Modified Scaled GED Score vs Threshold, p = 0.8,
N =28

degree to which these algorithms can recover these types of
undirected, highly cyclic and cliqued influence structures.
Similar work can be done to cluster individual data points
based on a distance metric. For example, pieces of music
could be clustered using algorithm 1 with the distance between
content-based audio features as the similarity function, the
hope being that these clusters reveal some property inherent to
the pieces of music (for example, genre or artist). Once again,
further research is required to investigate this application.
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